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Abstract

Short theory about multi-hole directional couplers in waveguide technology, simulation of couplers using
Matlab and full-wave simulation and construction and testing of a Ka-band coupler.

Contents

1 Introduction 1
1.1 Effect of holes in waveguide walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Hole diameter correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Wall thickness correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Voltage coupling coefficient of a single hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Application of the Chebyshev polynomials 5
2.1 A first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Plugging in some numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Example for five holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Algorithm to calculate the coupling coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 From coupling coefficients to hole diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Superimposed arrays and multiple rows of holes 12

4 Simulation of couplers 13
4.1 Effect of manufacturing tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Simulation in Matlab vs. full-wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Construction of a directional coupler 15
5.1 First attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A Matlab code 19

1 Introduction

For the design of a waveguide directional coupler, the Chebyshev polynomials are used (however, there is also
such a thing as a binomial directional coupler, but their frequency response is not as flat as for the Chebyshev
ones). Definition of the n-th Chebyshev polynomial:

Tn(x) = 2xTn−1(x)− Tn−2(x) (1)
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The first two Chebyshev polynomials are
T0(x) = 1 (2)

and
T1(x) = x (3)

and with the aid of Equation 1 the polynomials in Table 1 can be found.

Table 1: The first 6 Chebyshev polynomials

n Tn(x)
0 1
1 x
2 2x2 − 1
3 4x3 − 3x
4 8x4 − 8x2 + 1
5 16x5 − 20x3 + 5x
6 32x6 − 48x4 + 18x2 − 1

In standard Matlab (or Octave), there is no function available to calculate the coefficients of the Chebyshev
polynomials. The code shown in Listing 1 (see Appendix A) is a simple recursive implementation of an algorithm
with returns the n-th Chebyshev polynomial, using Equation 1 to Equation 3.
Important properties of Chebyshev polynomials:

• The Chebyshev polynomials are defined for x-values between −1 and +1.

• The n-th Chebyshev polynomial has exactly n zeros in the interval [−1, 1].

• They have the so-called equal-ripple property: this means the polynomials oscillate, but their maximum
and minimum values do not exceed ±1.

x
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y = T1(x)
y = T2(x)
y = T3(x)
y = T4(x)
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Figure 1: Plot of some Chebyshev polynomials

1.1 Effect of holes in waveguide walls

Consider two waveguides with a common broad wall. If there is one single hole in this wall, a portion of a wave
propagating in one of the waveguides “leaks” into the other waveguide. This can be expressed by means of the
voltage coupling coefficient

U = j 2π
a b λg

(
MxH

(1)
x H(2)

x +MzH
(1)
z H(2)

z − Py E(1)
y E(2)

y

)
(4)

where:
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• Mx and Mz are the x and z component of the magnetic polarisability of the hole,

• Py is the electric polarisability,

• Hx and Hz are the magnetic field components in waveguide 1 or 2,

• Ey are the electric field components in waveguide 1 or 2.

The waveguide dimensions are a and b, where a is the size of the broad wall, and λg is the guided wavelength.
The polarisability of a hole having a circular shape can be derived, but we skip this derivation here and give
just the expressions

Mx = Mz = d3

6 , Py = d3

12 (5)

where d is the hole’s diameter. Other hole shapes than circular can be used; e.g. there are directional couplers
using elliptical holes or even holes in the shape of a cross. We use the round holes because they are the simplest
to make.
From waveguide theory, one can find the values of the magnetic field components by

Hx = − sin π x
a
· e−j γ z (6)

Hz = j λg2 a cos π x
a
· e−j γ z (7)

Ey = λg
λ

sin π x
a
· e−j γ z (8)

we can substitute these expressions into Equation 4 and end up with Equation 9.

U = j 2π d3

a b λg

(
1
6 sin2 π x

a
+

λ2
g

24 a2 cos2 π x

a
−

λ2
g

12λ2 sin2 π x

a

)
(9)

The variable x corresponds to the distance of the hole from the wall (Figure 2).

x

Figure 2: Waveguide with a single hole

1.2 Corrections

The voltage coupling coefficient given by Equation 9 is only valid if the holes are very small compared to the
wavelength, and if the metal thickness is infinitely small. There are correction factors to take into account that
the hole diameters are in the same order of magnitude as the wavelength and also to correct for thick metal
walls.

1.2.1 Hole diameter correction

In practice, the size of the holes cannot be neglected. Assume round holes are used. Then they can be considered
as tiny circular waveguides, having a certain cutoff frequency and attenuation. The correction factor for the
hole size is

K1 = 2λ
π λ0

tan π λ0

2λ (10)
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where λ0 is the resonant wavelength of the hole. From the theory of circular waveguides, one can find

λ0 = 1.705 d (11)

for magnetic coupling, and
λ0 = 1.305 d (12)

for electric coupling.

1.2.2 Wall thickness correction

As said previously, the holes can be viewed as tiny circular waveguides. Because they are so small, they are
mostly operated below their cutoff frequency and thus the waves propagating through the holes are evanescent.
The evanescent waves are attenuated depending on the metal thickness. The attenuation is described with

K2 = exp
(
−2π A

λ0

√
1− λ2

0
λ2

)
(13)

where A describes the attenuation of magnetic and electric field components depending on the metal thickness.
For the magnetic field components,

A = 1.0064 t+ 0.04095 d (14)
and

A = 1.0103 t+ 0.02895 d (15)
for the electric field components.

1.3 Voltage coupling coefficient of a single hole

Using the previous definitions, the voltage coupling coefficient for one hole can be written as

U = j 2π d3

a b λg
· (u1 + u2 + u3) (16)

where u1 and u2 are the magnetic coupling terms, and u3 is the electric coupling term as follows:

u1 = 1
6 sin2 π x

a
·K1 ·K2 (17)

u2 =
λ2
g

24 a2 cos2 π x

a
·K1 ·K2 (18)

u3 = −
λ2
g

12λ2 sin2 π x

a
·K1 ·K2 (19)

Care must be taken that, for K1 and K2, the corresponding terms for the magnetic or electric field, respectively,
are taken into account.
So, with this expression for U , it is possible to design a single-hole directional coupler, like a Bethe-Hole coupler.
While such a coupler is simple to design and can offer quite good directivity, it is inherently narrowband. If a
directional coupler having a good directivity over a wide bandwidth is to be designed, a multi-hole coupler is
the solution.
If two holes next to each other are used (Figure 3), the coupling coefficients of the two holes can be simply
added.

x x

Figure 3: A coupler with two holes next to each other
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2 Application of the Chebyshev polynomials

2.1 A first example

This is actually an example taken from Levy’s paper, but slightly modified. Consider the directional coupler
shown in Figure 4, having four holes and symmetrical voltage coupling coefficients (a1, a2, a2, a1).

Port 1 (input)

Port 4 (isolated)

Port 2 (through)

Port 3 (coupled)

φ

a1 a2 a2 a1

Figure 4: A directional coupler with four holes

The electrical distance, φ, between the holes is

φ = 2π `
λg

(20)

where ` is the physical distance between the holes.
Assume all ports are matched and that a wave of amplitude 1 enters on the input port. Since the coupler is not
perfect, a portion of the incident wave will reach the isolated port; the net voltage reaching the isolated port is
then

I = a1 + a2 e−2 jφ + a2 e−4 jφ + a1 e−6 jφ (21)

where I stands for isolation. The coupling would be determined with

C = a1 e−3 jφ + e−jφa2e−2 jφ + e−2 jφa2e−jφ + e−3 jφa1 = (2 a1 + 2 a2) e−3 jφ (22)

and
|C| = 2 a1 + 2 a2 . (23)

From Equation 21, one can factor out e3 jφ as follows:

I = e−3 jφ (a1 ej 3φ + a2 ejφ + a2 e−jφ + a1 e−3 jφ) (24)

From Euler’s identity, we know that
ejφ = cosφ+ j sinφ (25)

and
e−jφ = cosφ− j sinφ , (26)

so we can write
ejφ + e−jφ = 2 cosφ . (27)

Therefore, Equation 24 can be written as

I = e−3 jφ (2 a1 cos 3φ+ 2 a2 cosφ) . (28)

In practice, we are not interested in the phase of I but only in the magnitude. For a directional coupler, we
want I to be minimal to have maximum isolation.
Equation 28 can be written as the sum of two Chebyshev polynomials with the abbreviation x = cosφ as
follows1:

|I| = |2 a1 T3(x) + 2 a2 T1(x)| (29)
1note that

∣∣e3 j φ
∣∣ = 1, so we can omit this term
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To show this, we insert the actual Chebyshev polynomials and x = cosφ into Equation 29:

|I| =
∣∣2 a1

(
4 cos3 φ− 3 cosφ

)
+ 2 a2 cosφ

∣∣ (30)

To further analyse this expression, we may use the identity

cos3 α = 1
4 (3 cosα+ cos 3α) (31)

which yields
|I| =

∣∣∣∣2 a1

(
4 · 1

4 (3 cosφ+ cos 3φ)− 3 cosφ
)

+ 2 a2 cosφ
∣∣∣∣ (32)

when inserted into Equation 30. This can be further simplified:

|I| =
∣∣∣∣2 a1

(
�4 ·

1
�4

(���3 cosφ+ cos 3φ)−���3 cosφ
)

+ 2 a2 cosφ
∣∣∣∣

= |2 a1 cos 3φ+ 2 a2 cosφ|
(33)

which has the same magnitude as Equation 28.
However, from Equation 29, we see that |I| is essentially the sum of two Chebyshev polynomials, T3 and T1. To
have the largest possible bandwidth while still having the flattest frequency response, |I| should be equal to a
Chebyshev polynomial,

|I| ∝ |T3(x)| (34)

and we now want to find out how we shall choose the voltage coupling coefficients a1 and a2 such that Equation 34
holds.
The equal ripple property of the Chebyshev polynomials is only valid in the range x ∈ [−1, 1]. Therefore, we
introduce a scaling factor, t:

|I| = |T3(t x)| (35)

The scaling factor must be determined such that t x = ±1 at the two corner frequencies of the directional
coupler.

t cosφ = ±1 ⇔ t = 1
cosφ (36)

From Equation 29, we find

|I| = |2 a1 T3(x) + 2 a2 T1(x)|
=
∣∣2 a1

(
4x3 − 3x

)
+ 2 a2 x

∣∣
=
∣∣8 a1 x

3 − 6 a1 x+ 2 a2 x
∣∣

=
∣∣8 a1 x

3 − (6 a1 − 2 a2)x
∣∣

(37)

and by applying the condition Equation 35, we find:∣∣8 a1 x
3 − (6 a1 − 2 a2)x

∣∣ =
∣∣4 t3 x3 − 3 t x

∣∣ (38)

Since we are only concerned about the magnitude, we can do a comparison of coefficients:

8 a1 = 4 t3 (39)
6 a1 − 2 a2 = 3 t (40)

Both, a1 and a2, can be expressed as follows:

a1 = a11 t
3 + a12 t (41)

a2 = a21 t
3 + a22 t (42)

We may write this equation system in matrix form, which allows to solve it easily using numeric software.(
8 0
6 −2

)
·
(
a11 a12
a21 a22

)
=
(

4 0
0 3

)
(43)
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The solution is (
1
2 0
3
2 − 3

2

)
which is the same as the following:

a1 = 1
2 t

3 (44)

a2 = 3
2 t

3 − 3
2 t (45)

Now we can normalise a2 with respect to a1, as follows:

a2

a1
=

3
2 t

3 − 3
2 t

1
2 t

3 = 3 t
3 − t
t3

= 3
(

1− 1
t2

)
= 3− 3

t2
(46)

How shall one interpret this result? it means the following: if the voltage coupling coefficient a2 is
(
3− 3

t2

)
times

a1, the directional coupler constructed in this way has a Chebyshev response and thus maximises bandwidth
and directivity. How the actual calculations are done is shown in an example.
The polynomials of the kind in Equation 46 are tabulated by Young and Levy [2, p. 142]. Refer also to Table 2.

2.1.1 Plugging in some numbers

Say we want to actually build a four-hole coupler as calculated previously. The coupler shall operate in the Ka
band, from 26.5GHz to 40GHz, using a WR-28 waveguide, and the coupling shall be −20dB.
From theory of rectangular waveguides, one can determine the guided wavelength

λg = c

f
· 1√

1−
(

c
2 a f

)2
(47)

which yields λg,1 = 18.67mm at 26.5GHz and λg,2 = 8.82mm at 40GHz. Figure 5 shows how the guided
wavelength depends on the frequency.

f / GHz

λg / mm

8
9

10
11
12
13
14
15
16
17
18
19

26 28 30 32 34 36 38 40

Figure 5: Guided wavelength as function of frequency

The design wavelength of the directional coupler is then the harmonic mean of the two corner wavelengths

λg = 2λg,1 λg,2
λg,1 + λg,2

(48)

which is λg = 11.98mm. Since the holes shall have an electrical distance of 90◦ at the design wavelength, their
distance is 2.99mm. With the physical distance known, it is possible to calculate the electrical distance at each
frequency (Equation 20) which is shown in Figure 6. Apparently, the electrical distance ranges from φ = 57.7◦

at the lowest frequency to φ = 122.3◦ at the highest frequency.
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f / GHz

φ

50◦

60◦

70◦

80◦

90◦

100◦

110◦

120◦

130◦

26 28 30 32 34 36 38 40

Figure 6: Electrical distance of the holes as function of frequency

The scaling factor t can be found as t = 1.871 because cosφ = ±0.534. Then, t cosφ = ±1 at the corner
frequencies, which is shown in Figure 7. Taking the harmonic mean to determine the design wavelength,
Equation 47, ensures that the hole distance is chosen such that cosφ has (besides the sign) the same value at
the two corner frequencies.

f / GHz

y

y = cosφ
y = t cosφ

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

26 28 30 32 34 36 38 40

Figure 7: Effect of the scaling factor

Assume now that a1 = 1. Then, according to the previous calculation, a2 = 3− 3
t2 = 2.143. This would result

in a theoretical coupling of
C = 2 a1 + 2 a2 = 6.286 (49)

but the desired coupling should be 0.1 only for a 20 dB coupler. So we divide a1 and a2 by 62.86 and find
a1 = 0.0159 and a2 = 0.03409. The theoretical frequency response of this directional coupler is shown in
Figure 8. Since the frequency response of a coupler with four holes depends on the Chebyshev polynomial T3,
there are exactly 3 zeros at the frequency response of the isolation.
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f / GHz

C, I / dB

coupling
isolation

−100

−80

−60

−40

−20

0

26 28 30 32 34 36 38 40

Figure 8: Theoretical frequency response of the four-hole Chebyshev coupler

2.2 Example for five holes

The directional coupler is shown schematically in Figure 9. Because the number of holes is now odd, we have
in total 3 different coupling coefficients, a1, a2, a3.

Port 1 (input)

Port 4 (isolated)

Port 2 (through)

Port 3 (coupled)

φ

a1 a2 a3 a2 a1

Figure 9: A directional coupler with 5 holes

The coupling coefficient for the isolation is:

I = a1 + a2 e−2 jφ + a3 e−4 jφ + a2 e−6 jφ + a1 e−8 jφ (50)

Factoring out e−4 jφ yields

I = e−4 jφ (a1e4 jφ + a2 e2 jφ + a3 + a2 e−2 jφ + a1 e−4 jφ) (51)

which can be written as
I = e−4 jφ (2 a1 cos 4φ+ 2 a2 cos 2φ+ a3) . (52)

The magnitude can be written in terms of Chebyshev polynomials as follows

|I| = |2 a1 T4(x) + 2 a2 T2(x) + a3 T0(x)| (53)

which the reader may easily verify. If we insert the actual Chebyshev polynomials T4, T2 and T0, we find

|I| =
∣∣2 a1

(
8x4 − 8x2 + 1

)
+ 2 a2

(
2x2 − 1

)
+ a3

∣∣ (54)

and we need to satisfy the condition
|I| = |T4(t x)| . (55)

From here, we find the equation

2 a1
(
8x4 − 8x2 + 1

)
+ 2 a2

(
2x2 − 1

)
+ a3 = T4(t x) (56)
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or
2 a1

(
8x4 − 8x2 + 1

)
+ 2 a2

(
2x2 − 1

)
+ a3 =

(
8 t4 x4 − 8x2 t2 + 1

)
(57)

respectively. This leads to the equation system

16 a1 x
4 = 8 t4 x4 (58)

(−16 a1 + 4 a2)x2 = −8 t2 x2 (59)
2 a1 − 2 a2 + a3 = 1 (60)

which can be written in matrix notation as follows: 16 0 0
−16 4 0

2 −2 1

 ·
a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

8 0 0
0 −8 0
0 0 1

 (61)

The solution of this system is:

a1 = 1
2 t

4 (62)

a2 = 2 t4 − 2 t2 (63)
a3 = 3 t4 − 4 t2 + 1 (64)

Now we can normalise the coupling coefficients with respect to a1. This yields

a2

a1
= 2 t4 − 2 t2

1
2 t

4 = 4 t4 − 4 t2
t4

= 4
(

1− 1
t2

)
= 4− 4

t2
(65)

and
a3

a1
= 3 t4 − 4 t2 + 1

1
2 t

4 = 6 t4 − 8 t2 + 2
t4

= 6− 8
t2

+ 2
t4

. (66)

Using the same frequency range as in the previous example and again normalising the coupling coefficients to
achieve a 20dB coupling, the frequency response thus obtained is shown in Figure 10.

f / GHz

C, I / dB

coupling
isolation

−100

−80

−60

−40

−20

0

26 28 30 32 34 36 38 40

Figure 10: Frequency response of the 5-hole directional coupler

It is easily verified that the polynomials obtained in Equation 65 and Equation 66 are exactly the same ones as
shown in [2]. However, the advantage of this method is that it is valid for an arbitrarily large number of holes
and does not rely on a table. The full table, published in [2], is also shown in Table 2.
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Table 2: Coupler polynomials

n a1 a2 a3 a4 a5 a6 a7 a8

3 1 2− 2
t2 1

4 1 3− 3
t2 3− 3

t2 1
5 1 4− 4

t2 6− 8
t2 + 2

t4 4− 4
t2 1

6 1 5− 5
t2 10− 15

t2 + 5
t4 10− 15

t2 + 5
t4 5− 5

t2 1
7 1 6− 6

t2 15− 24
t2 + 9

t4 20− 36
t2 + 18

t4 −
2
t6 15− 24

t2 + 9
t4 6− 6

t2 1
8 1 7− 7

t2 21− 35
t2 + 14

t4 35− 70
t2 + 42

t4 −
7
t6 35− 70

t2 + 42
t4 −

7
t6 21− 35

t2 + 14
t4 7− 7

t2 1

A coupler can be designed only with the aid of this table; the general procedure is as follows:

1. Determine the operating frequency range and the design wavelength.

2. Calculate the electrical hole distance φ = λg

4 .

3. Choose the desired number of holes n.

4. With t = cosφ, Table 2 yields the coupling coefficients for each hole.

However, using the table can be cumbersome and is not so easy to automate. Therefore, an algorithm is
developed to automatically calculate these coupler polynomials, such that arbitrarily large couplers can be
designed.

2.3 Algorithm to calculate the coupling coefficients

Listing 2 shows a simple algorithm which calculates the coupling coefficients for an arbitrary number of holes.
The results of the algorithm can be interpreted as follows. Assume couplerpoly(5) is called to determine the
coupling coefficients for a 5-hole coupler. The result returned would be the matrix

0 0 0 0 1
0 0 −4 0 4
2 0 −8 0 6
0 0 −4 0 4
0 0 0 0 1


which can be interpreted as follows

a1 = 1

a2 = − 4
t2

+ 4

a3 = 2
t4
− 8
t2

+ 6

a4 = − 4
t2

+ 4

a5 = 1

and corresponds to Table 2. Thanks to the algorithm, one can calculate the coupler polynomials for an arbitrarily
large number of holes.

2.4 From coupling coefficients to hole diameters

So far we have considered the calculation of the coupling coefficients to achieve a desired frequency response of
the coupler. But how to find the required hole diameter?
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According to Bethe’s small hole coupling theory [4], when x = a
4 , the coupling of a circular hole is

|C| = π d3

12 a2 b
(67)

so, to achieve a desired coupling, the hole diameter can be found by

d = 3

√
12 a2 b

π
|C| . (68)

However, this calculation does not take into account that the hole’s distance from the wall, x, may be different
than a

4 , and the finite metal thickness and hole size corrections mentioned previously are also not taken into
account. Therefore, Equation 68 gives only a initial guess. To find the optimal hole diameters, an iterative
procedure can be used, as depicted in Figure 11. This algorithm calculates the actually achieved coupling
coefficient based on the hole diameters, taking the various corrections into account (Section 1.3). If the coupling
of one particular hole is too low or too high, the hole diameter is adjusted, until all holes have a diameter such
that their resulting coupling coefficients are within a specified tolerance.

start

di ← 3

√
12 a2 b
π
|Ci|

ai ← U(di)

ai = Ci?increase di decrease di

calculate final directivity and coupling

end

ai too low ai too high

ai within tolerance

Figure 11: Flowchart to optimise the hole diameters

Of course, sophisticated optimisation algorithms like gradient optimisation or Nelder-Mead could be applied to
this problem; however, this “brute-force” optimisation has been used with success because the available comput-
ing power is usually large with today’s PCs and the number of holes is so small that the additional complexity
of a sophisticated optimisation algorithm is usually of small benefit. Anyway, there will be manufacturing
tolerances in the end, therefore it makes no sense to calculate the hole diameters to a large amount of decimal
places (depending on the manufacturing technique).

3 Superimposed arrays and multiple rows of holes

With the theory and algorithms described so far, it becomes possible to calculate the diameters for an arbitrary
number of holes, to achieve a given coupling. However, there may still arise some problems.
Consider a directional coupler having 24 holes at x = 0.203. The smallest hole would have a diameter of
0.283mm, while the largest one would be 2.387mm. It is obvious that the span between the smallest and the
largest hole is very large, which is more difficult to manufacture. Especially the small holes are difficult and
thus more expensive.
Therefore, superimposed arrays can be used. For instance, 3 superimposed arrays of 8 holes can be viewed as
follows:
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a1 a2 a3 a4 a4 a3 a2 a1
a1 a2 a3 a4 a4 a3 a2 a1

a1 a2 a3 a4 a4 a3 a2 a1

a1 a2 a3 a4 a4 + a1 a3 + a2 a2 + a3 a1 + a4 a4 + a1 a3 + a2 a2 + a3 a1 + a4 a4 a3 a2 a1

Instead of physically having 3 rows of holes, one can add the coupling coefficients, as shown in the last row. If
the number of holes is odd, a possible arrangement is shown below:

a1 a2 a3 a4 a3 a2 a1
a1 a2 a3 a4 a3 a2 a1

a1 a2 a3 a4 a3 a2 a1

a1 a2 a3 a4 + a1 a3 + a2 a2 + a3 a1 + a4 + a1 a3 + a2 a2 + a3 a1 + a4 a3 a2 a1

The advantage of these superimposed arrays is that the variation of the hole diameters is much smaller. Figure 12
shows the diameter of each hole for a coupler having 24 holes, for different array configurations. The 24-1 array
is one array of 24 holes, whereas the 8-5 array are 5 superimposed arrays of 8 holes each, and the 4-11 array is
11 arrays of 4 holes each. As one can see, the less holes there are, the smaller is the change from the smallest
to the largest hole.

Hole #

d / mm

24-1 array
8-5 array
4-11 array

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 12: Comparison of the hole diameters for differrent array configurations

4 Simulation of couplers

4.1 Effect of manufacturing tolerances

The most sensitive dimension seems to be the diameter of the holes. The coupling coefficient is not very sensitive
to the hole diameter, but for a good coupler, one wants the isolation to be as high as possible, i.e. the signal on
the “isolated” port is very small. If the diameter of one hole changes, the overall coupling will not be affected
very much, but the isolation is likely to be affected because the signal on the “isolated” port is so small.
So, a simple Monte-Carlo simulation has been performed for the hole diameters. A coupler having 6 superim-
posed arrays of 12 holes was designed. The coupling was 10 dB. Then, the hole diameters have been changed
randomly by ±0.05mm. 400 runs have been done and the frequency response was plotted each time. Figure 13
shows the result with the different curves overlayed.
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Figure 13: Comparison of the hole diameters for differrent array configurations

For reference, the “ideal” isolation and coupling are shown as well, which means in this case that the hole
diameters are all rounded to 0.05mm but without tolerances. As one can see, as soon as the tolerances are
introduced, the coupling barely changes while the isolation is severely affected and thus leads to bad directivity
values.

4.2 Simulation in Matlab vs. full-wave

The simple simulation in Matlab does only provide approximate values for the coupling and the isolation. There
are no values available for the return loss and the insertion loss. Figure 14 shows a comparison of the simulation
with a full-wave simulator. As one can see, the results are quite similar. The main difference comes from the
fact that the Matlab simulation does not take into account the interaction of the coupling holes, while the
full-wave simulation does.
However the Matlab simulation is still advantageous because it provides the coupling value which is very close
to the real one and it runs much faster than any full-wave simulation using, e.g. FEM or FTDT techniques.
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Figure 14: Simulation of a coupler having 12 holes in 6 arrays in 2 rows

5 Construction of a directional coupler

5.1 First attempt

A directional coupler with the following specifications shall be manufactured:

• coupling −10dB

• WR-28 waveguide (a = 7.11mm, b = 3.55mm)

• frequency range 26.5GHz to 40GHz – Ka-band

• no internal termination for the isolated port, i.e. it is a bidirectional coupler

• 2 rows of coupling holes

• 5 superimposed Chebyshev arrays of 8 holes each

The Matlab script was used to calculate the dimensions and the spacing of the coupling holes. The hole diameters
according to Table 3 were found, while the spacing between the holes was found to be 2.99mm (rounded to
3mm) and the spacing of the two rows was determined to be 4.22mm.

15



Table 3: Diameters of the coupling holes

hole diameters / mm
# calculated rounded
1 1.0481 1.0
2 1.4821 1.5
3 1.8147 1.8
4 1.9950 2.0
5 2.0197 2.0
6 1.9655 2.0
7 1.9655 2.0
8 2.0197 2.0
9 2.0197 2.0
10 1.9655 2.0
11 1.9655 2.0
12 2.0197 2.0
13 2.0197 2.0
14 1.9655 2.0
15 1.9655 2.0
16 2.0197 2.0
17 2.0197 2.0
18 1.9655 2.0
19 1.9655 2.0
20 2.0197 2.0
21 1.9950 2.0
22 1.8147 1.8
23 1.4821 1.5
24 1.0481 1.0

Figure 15a shows the three main parts of the directional coupler. The top and bottom pars of the waveguide have
been CNC milled from 6061 aluminium. The perforated sheet bas been made by gluing a piece of 0.5mm thick
aluminium sheet onto a base plate. The holes were then drilled manually and the contour was also manually
milled. Afterwards, the perforated sheet could be removed from the base plate by heating it with a hot air gun,
thus melting the glue.
The parts are mounted together by means of 10 M3 screws. Precise alignment is ensured by two dowel pins.
Figure 15b shows the assembled directional coupler with an externally mounted termination.

(a) parts (b) assembled

Figure 15: Manufactured waveguide directional coupler

After assembly, the directional coupler’s performance was measured using a Rohde & Schwarz ZVA40 network
analyser. Figure 16 shows the measured performance of the coupler, together with a full-wave simulation using
HFSS.
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Figure 16: Measured performance of the first version of the coupler

One can see from Figure 16 that the insertion loss is quite high, up to approx. 4.5 dB. Further, the coupling is
1 dB to 2 dB too low. The isolation is only 30 dB in the worst case, giving roughly a directivity of 20 dB. The
return loss is around 15 dB to 30 dB. The poor directivity could be either related to the same effect causing the
high insertion loss, but it may also be due to the tolerances of the hole diameters.
However, it should be noted that the waveguide adapters required to connect the ZVA40 outputs to the DUT
have not been calibrated out, so they will indeed affect both, the return loss and the insertion loss measurements.
In fact, the return loss measured is so high that it is likely that it is actually dominated by the waveguide
adapters.
To improve the insertion loss, a small recess was milled on the bottom part of the waveguide. Without the
recess, the pressure originating from the screws is distributed over a relatively large surface area, giving a low
pressure. With the recess shown in Figure 17, the pressure along the waveguide walls is higher, such that a
good electrical contact is ensured.

Figure 17: Recess to increase the pressure on the waveguide walls

Indeed, having the recess dramatically improves the performance of the device. Figure 20 shows the comparison
of the measured performance of the device before and after making the recess. The return loss has not improved
much. Again, the waveguide to coaxial adapters have not been calibrated out. Nevertheless, the insertion loss

17



has improved quite a bit and is now almost constant around 1.5 dB. Assuming an insertion loss of 0.4 dB for each
of the waveguide to coax adapters2, this yields an insertion loss for the coupler of around 0.7 dB. The coupling
has improved as well. With the recess, the coupling variation is around 1 dB, the worst case coupling being
11 dB. Also the isolation has improved. The directivity is now at least 25 dB up to 30 dB, but the improvement
is not as dramatic as for the insertion loss. This may be an indicator that the hole diameters are too far off.
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Figure 18: Comparison of the coupler without recess (a) and with recess (b)

It can also be observed that, while all parameters have improved, the return loss stays approximately the same.
This is again an indicator that the return loss measured is not that one of the coupler, but just that of the
waveguide adapters.
The coupler has been gold-plated after these measurements. The finished coupler is shown in Figure 19.

2typical value taken from an adapter from Pasternack
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Figure 19: Finished WR-28 directional coupler, 10 dB for Ka-band

After gold-plating, the coupling was measured again and is shown in Figure 20. It is now slightly worse than
before; one reason could be improper alignment of the perforated sheet or dirt on the mating surfaces. The
plating consists of approx. 2µm Au over Ni; if the gold thickness is too thin, some current will flow in the nickel
layer which has a higher resistance than gold, which could also be an explanation of the worse performance of
the coupler.
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Figure 20: Comparison of the coupler without recess (a) and with recess (b)

It can also be observed that the simulated performance differs significantly from the actually measured perfor-
mance. After all measurements have been done, it was found that there was a minor mistake in the Matlab
script which calculates the hole dimensions and the calculated dimensions were rounded wrong, which leads to
a worse coupling coefficient.

A Matlab code

Listing 1: Matlab code to calculate the Chebyshev polynomials
1 function [Tn] = chebypoly(n)
2 if n == 0
3 Tn = 1;
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4 return;
5 elseif n == 1
6 Tn = [1 0];
7 return;
8 else
9 Tn1 = chebypoly(n-1);

10 Tn2 = chebypoly(n-2);
11
12 Tn = 2*conv([1 0], Tn1) - [0 0 Tn2];
13 return;
14 end
15 end

Listing 2: Matlab code to calculate the coupler polynomials
1 function p = couplerpoly(N)
2
3 if mod(N, 2)
4 A = zeros((N+1)/2, (N+1)/2);
5 else
6 A = zeros(N/2, N/2);
7 end
8
9 for ind = 1:N/2

10 num = N-2*ind+1;
11 col = [zeros(1, N-num-1) 2*chebypoly(num)]';
12 A(:, ind) = col(1:2:end);
13 end
14 if mod(N, 2)
15 row = [zeros(1, N-1) chebypoly(0)];
16 A(end, :) = A(end, :) + row(1:2:end);
17 end
18
19 p = chebypoly(N-1);
20 B = diag(p(1:2:end));
21
22 result = A \ B;
23
24 polys = zeros(size(result, 1), N);
25 polys(:, 1:2:end) = result(:, :);
26
27 numerator = polys(1, :);
28
29 halfmat = zeros(size(polys));
30
31 for ind = 1:size(polys, 1)
32 denominator = [polys(ind, :) zeros(1, size(polys, 2)-1)];
33
34 [q, ~] = deconv(denominator, numerator);
35
36 halfmat(ind, :) = q;
37 end
38
39 if mod(N,2)
40 halfrows = floor(N/2);
41 result = [halfmat; flipud(halfmat(1:halfrows, :))];
42 else
43 result = [halfmat; flipud(halfmat)];
44 end
45
46 p = fliplr(result);
47
48 end
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Listing 3: Code for automatic design of directional couplers
1 % PRELIMINARY VERSION
2
3 clear all; close all; clc
4
5
6 % change values below as needed
7
8 % coupling in db
9 cc = 10;

10
11 % lower frequency
12 fl = 26.5e9;
13
14 % upper frequency
15 fh = 40e9;
16
17 % waveguide dimensions
18 a = 7.11e-3;
19 b = 3.55e-3;
20
21 % wall thickness
22 t = 0.2e-3;
23
24 % number of holes
25 N = 12;
26
27 % number of arrays
28 NA = 6;
29
30 % number of rows
31 NR = 2;
32
33 % distance of the holes to the walls, as fraction of a
34 k = 0.203;
35
36 % wavelengths at the two corner frequencies
37 c = 2.998e8;
38 ll = c/fl;
39 lh = c/fh;
40
41 % mean frequency (shouldn't this be the geometric mean?) and wavelength
42 f = (fl + fh) / 2;
43 lambda = @(f) c/f;
44
45 x = k*a;
46
47 % lower and upper guided wavelength
48 ll = 1/sqrt(1/ll^2 - 1/(2*a)^2);
49 lh = 1/sqrt(1/lh^2 - 1/(2*a)^2);
50
51 lg = @(f) 1/sqrt(1/lambda(f)^2 - 1/(2*a)^2);
52
53
54 ca = 1-c;
55
56
57 % calculate hole spacing.
58 sp = ll*lh/(2*(ll+lh));
59 fprintf('hole spacing: %f mm\n', sp*1000);
60
61 % electrical distance of the holes
62 phi = 2*pi*sp/ll;
63 ww = cos(phi);
64
65 aet = @(d) 1.0103*t + 0.0579*d/2;
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66 amt = @(d) 1.0064*t + 0.0819*d/2;
67
68 ke = @(d,f) exp(-2*pi*aet(d)./(1.305*d) .* sqrt(1-(1.305*d/lambda(f)).^2));
69 km = @(d,f) exp(-2*pi*amt(d)./(1.705*d) .* sqrt(1-(1.705*d/lambda(f)).^2));
70
71 qe = @(d,f) 2*lambda(f)./(pi*1.305*d) .* tan(pi*1.305*d./(2*lambda(f)));
72 qm = @(d,f) 2*lambda(f)./(pi*1.705*d) .* tan(pi*1.705*d./(2*lambda(f)));
73
74 u1 = @(d,f) sin(pi*x/a)^2/6 .* km(d,f) .* qm(d,f);
75 u2 = @(d,f) cos(pi*x/a)^2*lg(f)^2/(24*a^2) .* km(d,f) .* qm(d,f);
76 u3 = @(d,f) -sin(pi*x/a)^2*lg(f)^2/(12*lambda(f)^2) .* ke(d,f) .* qe(d,f);
77 U = @(d,f) 2*pi*d.^3/(a*b*lg(f)) .* (u1(d,f) + u2(d,f) + u3(d,f));
78
79
80
81 % find the coupler polynomial.
82 poly = couplerpoly(N);
83 A = zeros(size(poly,1), 1);
84 for row = 1:size(poly,1)
85 A(row) = polyval(poly(row,:), ww);
86 end
87
88
89
90 Aa = 20*log10(A / sum(A));
91
92 N2 = ceil(N/2);
93
94 % total number of holes per row
95 NH = N + (NA-1)*N2;
96 fprintf('number of holes per row: %d\n', NH);
97
98 AS = zeros(NA, NH);
99

100 for j=1:NA
101 for k=1+(j-1)*N2 : NH
102 ind = k-(j-1)*N2;
103 if ind > length(A)
104 AS(j,k) = 0;
105 else
106 AS(j,k) = A(k-(j-1)*N2);
107 end
108 end
109 end
110
111 s = sum(sum(AS));
112
113 if NA > 1
114 co = 20*log10(s ./ sum(AS)) + cc + 6.0206*(NR-1);
115 else
116 co = 20*log10(sum(AS) ./ AS) + cc + 6.0206*(NR-1);
117 end
118
119 d_initial = nthroot(12*a^2*b./(pi*10.^(co/20)),3);
120
121 func = @(d) norm(20*log10(1./U(d,f)) - co);
122 d_best = fminsearch(func, d_initial, optimset('MaxFunEvals', 30000, 'MaxIter', 30000));
123
124 % best and rounded hole diam.
125 d = round(50e3*d_best)/50e3;
126 fprintf('initial, best and rounded hole diameters:\n');
127 disp([d_initial' d_best' d'])
128
129 cnew = 20*log10(1./U(d,f));
130
131 % actual coupling

22



132 coup = 20*log10(sum(10.^(-cnew/20)))+6.0206*(NR-1);
133 fprintf('actual coupling: %f\n', coup);
134 fprintf('distance of the rows: %f mm\n', (a-2*x)*1e3)
135 fprintf('total length of coupled section: %f\n', NH*sp*1e3)
136
137 % simulation
138 f = linspace(fl, fh);
139
140 k = zeros(length(f), 4);
141
142
143 dist = (0:NH-1)*sp;
144
145 for ind = 1:length(f)
146
147
148
149 phase1 = -2*pi/lg(f(ind))*dist;
150 isol_ideal = 20*log10(abs(sum(U(d_best, f(ind)) .* exp(-1i*2*phase1))));
151 isol = 20*log10(abs(sum(U(d, f(ind)) .* exp(-1i*2*phase1))));
152
153 isol_max = 20*log10(abs(sum(U(d+0.02e-3, f(ind)) .* exp(-1i*2*phase1))));
154 isol_min = 20*log10(abs(sum(U(d-0.02e-3, f(ind)) .* exp(-1i*2*phase1))));
155
156 phase2 = fliplr(phase1);
157 phase = phase1 + phase2;
158 num = (0:NH-1);
159 koppel_ideal = 20*log10(abs(sum(NR*(U(d_best, f(ind)) .* exp(-2i *phi)))));
160 koppel = 20*log10(abs(sum(NR*(U(d, f(ind)) .* exp(-2i *phi)))));
161
162 koppel_max = 20*log10(abs(sum(NR*(U(d+0.02e-3, f(ind)) .* exp(-2i *phi)))));
163 koppel_min = 20*log10(abs(sum(NR*(U(d-0.02e-3, f(ind)) .* exp(-2i *phi)))));
164
165
166
167 k(ind, :) = [isol_ideal isol koppel_ideal koppel];
168
169
170 end
171
172 figure(1);
173 plot(f/1e9, k);
174 grid on
175 legend('isolation ideal', 'isolation rounded', 'coupling ideal', 'coupling rounded')
176 xlabel('f / GHz');
177 ylabel('dB');
178
179
180
181 montecarlo = 400;
182
183 xplus = 0.05e-3;
184 xminus = -0.05e-3;
185
186 r = [0 1; 1 1] \ [xplus; xminus];
187
188 res_isol = zeros(montecarlo, length(f));
189 res_koppel = res_isol;
190
191 for run = 1:montecarlo
192
193 tol = r(1)*rand(size(d)) + r(2);
194
195
196
197 for ind = 1:length(f)
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198
199 phase1 = -2*pi/lg(f(ind))*dist;
200 isol = 20*log10(abs(sum(U(d+tol, f(ind)) .* exp(-1i*2*phase1))));
201
202 phase2 = fliplr(phase1);
203 phase = phase1 + phase2;
204 num = (0:NH-1);
205
206 koppel = 20*log10(abs(sum(NR*(U(d+tol, f(ind)) .* exp(-2i *phi)))));
207
208
209
210 res_isol(run, ind) = isol;
211 res_koppel(run, ind) = koppel;
212
213 end
214
215
216
217 end
218
219 figure(2);
220
221 plot(f, res_isol, 'r', f, res_koppel, 'b');
222
223
224 if 1
225 op = fopen('output.txt', 'w');
226
227 for ind = 1:montecarlo
228
229
230 for j = 1:length(f)
231
232 fprintf(op, '%f %f %f\n', f(j), res_isol(ind, j), res_koppel(ind, j));
233 end
234 fprintf(op, '\n\n');
235
236
237 end
238
239 fclose(op);
240
241 end
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