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Description

Figure 1 shows the inverted pendulum. It consists
of a slider which can be moved in direction x and a
pendulum which is mounted on that slider.

Figure 1: System block diagram

The controller’s task now is to move the slider in
such a way that the pendulum always points upwards.
The controller’s input signal is the position x. The
slider will then be moved to that position and the
pendulum is hold in the upper position.

Differential equations

Mechanical

For the slider’s movement, the balance of forces

Fc(t) = FM(t)− FP,h(t) (1)

applies, where FS(t) is the horizontal force on the
slider, FM(t) is the motor’s force and FP,h(t) the
horizontal component of the pendulum’s force.

For Fc(t) itseltf, the differential equation

FS(t) = mc ẍ(t) (2)

applies which can be put into Equation 3. This
results in the differential equation:

mc ẍ(t) = FM(t)− FP,h(t) (3)

For the pendulum’s center of mass, the differential
equation

FP,h(t) = mP ẍP(t) (4)

can be written, where xP(t) is the pendulum’s x
position, for which

xP(t) = x(t) + l sinϕ(t) (5)

holds. When derived twice, we get

ẍP(t) = ẍ(t) + l ϕ̈(t) cosϕ(t)− l ϕ̇2(t) sinϕ(t) (6)

bearing in mind the product and chain rules of dif-
ferential calculus. Therefore,

FP,h(t) =
mP

(
ẍ(t) + l ϕ̈(t) cosϕ(t)− l ϕ̇2(t) sinϕ(t)

) (7)

and when put together with Equation 3, the following
differential equation results:

(mc +mP) ẍ(t) = FM(t)−
mP

(
l ϕ̈(t) cosϕ(t)− l ϕ̇2(t) sinϕ(t)

) (8)

This equation describes the linear displacement both
of the pendulum and the slider. It is a nonlinear
differential equation which needs to be linearised
before a state-space model can be developed. Since
ϕ = 0 in the operating point, we can linearise the
pendulum around that operating point. The follow-
ing equations hold:

sinϕ ≈ ϕ (9)
cosϕ ≈ 1 (10)

Therefore, we can write the linearised differential
equation:

(mc +mp) ẍ(t) = FM(t)−mp l ϕ̈(t) (11)

Next, we need to describe the coupling between slider
and pendulum. This can be done with the torque.
Basically, the torque is expressed through the equa-
tion

M = J ϕ̈(t) (12)

but there is also an additional torque, resulting from
the gravitational force

Mg = mp l g sinϕ(t) (13)

and a third torque resulting from the slider:

Mc = −mp l ẍ(t) cosϕ(t) (14)

Note the minus sign. This is because this is the only
torque whose direction is in opposition to the other
two torques. When putting all together, we get the
torque equation:

J ϕ̈(t) = mp l g sinϕ(t)−mp l ẍ(t) cosϕ(t) (15)
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This is also a nonlinear differential equation. The
inertial moment J of the pendulum is

J = mp l
2 (16)

so the complete and linearised differential equation
is

mp l
2 ϕ̈(t) = mp l g ϕ(t)−mp l ẍ(t) (17)

or, when a bit more simplified:

l ϕ̈(t) = g ϕ(t)− ẍ(t) (18)

Motor

Next step is to combine the mechanical model of the
pendulum with that one of the motor. The motor
current is

i(t) = 1
R

(
v(t)− n(t)

kN

)
(19)

where v(t) is the voltage applied to the motor, n(t) is
the motor speed and kN is the motor speed constant.
The motor speed n(t) can be expressed by the slider
speed ẋ(t). If the motor speed unit is

[ 1
min
]
, then

the slider speed is

ẋ(t) = π r n(t)
30 (20)

so when put together, we get:

i(t) = 1
R

(
v(t)− 30 ẋ(t)

π r kN

)
(21)

Motor torque is proportional to motor current with
the torque constant kM, so we can write:

M(t) = kM

R

(
v(t)− 30 ẋ(t)

π r kN

)
(22)

Last but not least, the slider force FM(t) can be
expressed by the motor torque and the gear radius:

FM(t) = M(t)
r

= kM

Rr

(
v(t)− 30 ẋ(t)

π r kN

) (23)

Combination

Now we can combine the differential equations for
the pendulum with the one for the motor. We get
the following system of differential equations:

(mc +mp) ẍ(t) + 30 kM

π r2 kN R
ẋ(t) +mp l ϕ̈(t) = kM

Rr
v(t)

l ϕ̈(t) + ẍ(t)− g ϕ(t) = 0

We use the following shorthands:

a = mc +mp (24)

b = 30 kM

π r2 kN R
(25)

c = mp l (26)

d = kM

Rr
(27)

Then, we can rewrite the differential equation system
as follows:

a ẍ(t) + b ẋ(t) + c ϕ̈(t) = d v(t) (28)
l ϕ̈(t) + ẍ(t)− g ϕ(t) = 0 (29)

In order to bring the system in state space form,
we solve Equation 28 for ϕ̈(t) and put that into
Equation 29. We get

ϕ̈(t) = d

c
v(t)− b

c
ẋ(t)− a

c
ẍ(t) (30)

and this results in

l d

c
v(t)− l b

c
ẋ(t)− l a

c
ẍ(t) + ẍ(t)− g ϕ(t) = 0 (31)

when put into the second equation. Solving for ẍ(t)
results in:

ẍ(t) = g

1− l a
c

ϕ(t) + l b

c− l a
ẋ(t)− l d

c− l a
v(t) (32)

In the next step, we solve Equation 29 for ẍ(t) and
put it into Equation 28. We get

ẍ(t) = g ϕ(t)− l ϕ̈(t) (33)

from Equation 29. When put into Equation 28, we
get:

a g ϕ(t)− a l ϕ̈(t) + b ẋ(t) + c ϕ̈(t) = d v(t) (34)

When solved for ϕ̈(t), we get:

ϕ̈(t) = d

c− a l
v(t)− a g

c− a l
ϕ(t)− b

c− a l
ẋ(t) (35)

Therefore, we can now write our state space model:
ẋ(t)
ϕ̇(t)
ẍ(t)
ϕ̈(t)

 =


0 0 1 0
0 0 0 1
0 g

1− a l
c

b l
c−a l 0

0 − a g
c−a l − b

c−a l 0

 ·

x(t)
ϕ(t)
ẋ(t)
ϕ̇(t)

+


0
0

− d l
c−a l
d

c−a l

 · v(t)

(36)
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The parameters of the state space model are as fol-
lows:

g

1− a l
c

= −gmP

mc
(37)

b l

c− a l
= − 30 kM

kN mc π r2 R
(38)

a g

c− a l
= −g (mp +mc)

l mc
(39)

b

c− a l
= − 30 kM

kN l mc π r2 R
(40)

d l

c− a l
= − kM

mc r R
(41)

d

c− a l
= − kM

l mc r R
(42)

Actual parameters

In order to compute the matrices for the actual state
space model, the values seen in Table 1 are used.

Parameter Value Units

g 9.81
[m

s2

]
kN 317

[ 1
min V

]
lM 0.0302

[Nm
A
]

l 280 [mm]
mc 1.73 [kg]
mp 0.175 [g]
r 12 [mm]
R 316 [mΩ]

Table 1: Values used for the individual model pa-
rameters

State space model

The inverted pendulum’s state space model

ẋ = A x + bu (43)
y = cT x (44)

uses the following parameters:

A =


0 0 1 0
0 0 0 1
0 −0.99234 −11.556 0
0 38.580 41.273 0

 (45)

b =
(

0 0 4.6035 −16.441
)T

(46)

cT =
(

1 0 0 0
)

(47)

For the eigenvalues of A, we get the equation

det (s I−A) = 0 (48)

which gives us the four following eigenvalues:
{0, 6.02,−5.63,−11.95}. As we can see, the second
eigenvalue has a positive real part and therefore, the
system is – not surprisingly – unstable. The whole
system – without controller – can be drawn as a
block diagram, shown in Figure 2.

Figure 2: System block diagram

The state vector x is defined as

x =
(
x ϕ ẋ ϕ̇

)T
(49)

where ϕ is the pendulum’s angular displacement and
x is the slider position. The derivatives are the
angular speed and slider speed, respectively.

Observability

Observability of the system can be tested by means
of the observability matrix QB , which can be calcu-
lated with

QB =


cT

cT A
cT A2

cT A3

 (50)

and if this matrix has full rank, i.e.

rg QB = 4 (51)

the system is observable. In this case, we get a
observability matrix of

QB =


1 0 0 0
0 0 1 0
0 −0.9923 −11.5564 0
0 11.4679 133.5509 −0.9923


which has full rank and a determinant of det QB ≈
−0.9847 which means the system is observable.

Controllability

Controllability is one other important property which
should be tested before a state space controller is
implemented. The controllability matrix QS can be
calculated with

QS =
(

b A b A2 b A3 b
)

(52)
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If this matrix has full rank (or in case of a SISO
system, a nonzero determinant) the system is con-
trollable. For this system, we get

QS =


0 4.6 −53.2 631.1
0 −16.4 190 −2830

4.6 −53.2 631.1 −7482.1
−16.4 190 −2830 33378.5


which also has full rank. Therefore, the system is
not only observable, but also controllable.

Controllable standard form

In order to simplify controller design, the system’s
state space equations Equation 43 and Equation 44
are converted to the controllable standard form. To
do this, we need the vector qS , which is the last row
of the inverse controllability matrix, Q−1

S . We get

qS =
(
−0.0062 −0.0017 0 0

)
and now we are able to calculate the transformation
matrix P which is given by

P =


qS

qS A
qS A2

qS A3

 (53)

The modified system matrices are now given by

Ã = P A P−1 (54)
c̃T = cT P−1 (55)

which leads to the following modified system matri-
ces:

Ã =


0 1 0 0
0 0 1 0
0 0 0 1
0 404.89 38.58 −11.56


b̃ =

(
0 0 0 1

)T

c̃T =
(
−161.29 0 4.6 0

)
With this new state space model in controllable stan-
dard form, it is very easy to calculate the components
for the controller.

State space controller

In order to hold the inverted pendulum at the de-
sired point, a state space controller is needed. The

system’s structure is shown in Figure 3 when such
a controller is implemented and the control loop is
closed.

Figure 3: Closed loop system block diagram

The controller is represented by the constant (1× 4)
matrix rT, the matrix V represents a prefilter. The
prefilter is needed together with the controller in
order to achieve stationary accuracy.

State space controllers can be designed using various
methods, two of them being

• pole placement

• Matlab with the lqr or acker command.

In this document, we should show both of them.

Method of pole placement

As we have seen in the first section, we have two
eigenvalues which are located at inappropriate coor-
dinates. That is, one eigenvalue in the origin and
one in the positive half of the s plane at 6.02. The
eigenvalues for the modified system in controllable
standard form are exactly the same.

These two inappropriate eigenvalues need to be
shifted along the real axis until they have negative
real parts. We choose −10 and −9 as the destina-
tion points for these two eigenvalues. The other
eigenvalues are shifted to integer numbers. So the
characteristic polynom of the matrix Ã+b̃ r̃T should
be as follows:

(s+ 12) (s+ 6) (s+ 10) (s+ 9)

which leads to the polynom

s4 + 37 s3 + 504 s2 + 2988 s+ 6480

when expanded. Now, from the coefficients of this
polynom, we can directly see the desired form of the
matrix ACL = A + b̃ r̃T:

ACL
!=


0 1 0 0
0 0 1 0
0 0 0 1

−6480 −2988 −504 −37


so we get

rT =
(
−6480 −3392.9 −542.6 −25.44

)
for the controller.
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Simulations

Figure 4 shows two step responses of the system sim-
ulated with Simulink. The step occurs at position
t = 0.5 s. The first step response is simulated when
the system is controlled using the above designed
controller, and the second step response is a simu-
lation without any controller. As one can see, the
uncontrolled system is unstable and things get out
of hand very quickly here compared to the controlled
system, which, however, has a stationary error. But
at least the controlled system is no longer unstable.

In order to compensate the stationary error, the pre-
filter must be designed. In the case of a SISO system
like this one, the prefilter is a scalar value. From the
state space model Ã, b̃ and c̃T, we can obtain the
transfer function

G(s) = 4.604 s2 − 161.3
s4 + 37s3 + 504s2 + 2988s+ 6480

For such a transfer function, we can calculate the
final value with some aid of the Laplace transform.
The final value is

lim
t→∞

y(t) = lim
s→0

sG(s) (56)

and when a step is used for the system input we get

lim
t→∞

y(t) = lim
s→0 �

s
1
�s
G(s) = lim

s→0
G(s) (57)

So, for this system, we can obtain a final value of

lim
s→0

G(s) ≈ −0.0249

and therefore, the prefilter must have a gain of

V = 1
−0.0249 ≈ −40.18

The step response achieved with state space con-
troller and prefilter can be seen in Figure 5.
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Figure 4: Simulated step responses of the inverted pendulum with and without controller
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Figure 5: Simulated step response with prefilter
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Figure 6: Simulated values of the state variables

In Figure 6 the four state variables are plotted over
the time in order to verify that no extreme values
occur. E.g. if the state feedback would have too
large gains, it produces too large amplitudes at the
actuator.

In Figure 7 we can see a step forth and back. As
we can see, the position x always first moves to-
wards the opposite position than desired. This is
because the system given is not a minimum-phase
system. Nonminimal phase systems contain some
allpass path.
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Figure 7: Simulated step response back and forth

Using Matlab

In Matlab, we can easily check controllability and
observability with the following code snippet:

% observability matrix
Qb = [c; c*A; c*A^2; c*A^3];

% controllability matrix
Qs = [b A*b A^2*b A^3*b];
rank(Qb)
rank(Qs)

Also, a state space controller can be developed us-
ing the built-in function acker which implements
Ackermann’s formula to calculate the controller com-

ponents. With

acker(A, b, [-12 -6 -10 -9])

the controller matrix rT is directly returned, assum-
ing A and b are the state space matrices in control-
lable standard form. The system’s poles are placed
at −12, −6, −10 and −9, as before. Since the acker
function in Matlab assumes negative feedback, the
signs of the controller components are the opposite
of that ones which we calculated before, that is

ans =
1.0e+03 *
6.4800 3.3929 0.5426 0.0254
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but if we look closer at these values, they should look
like before.

Another possible solution would be an LQR con-
troller. It could be calculated using the lqr com-
mand in Matlab. The LQR controller, also known
as Riccati controller, is an optimised controller. It
can be calculated by minimising the optimisation
criterion

J =
∞∫

0

xT Q x + uT R u dt (58)

which leads to a so-called algebraic Riccati equation.
It can be solved using numerical methods. For a
SISO system, the value R is not a matrix but a
scalar R. The larger R or R is, respectively, the
slower is the controller.

The matrix Q is a diagonal matrix. It is called
weighting matrix, since we can express a weighting
for each state variable. This weighting expresses how
important that particular state variable is for the
controller. We choose

Q =


7000 0 0 0

0 8000 0 0
0 0 300 0
0 0 0 200


and

R = 10

as starting points. With a few iterations, we can ob-
tain quite interesting controllers. The corresponding
step responses can be seen in Figure 8.
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Figure 8: Simulated step responses for various Riccati controllers

Measurements

The first controller implemented by pole placement
works fine, but has some slight oscillations. With
the Riccati controller we get better results. The best
result can be achieved with

Q = diag (9000, 4000, 0, 0)

and
R = 2

which can easily be found by some iterations. Since
the model is only a approximation, there is no ex-
act way to calculate the controller coefficients. The
corresponding controller’s step response is visible
in Figure 9. Figure 10 is a very similar diagram,
but here, the position is shown over a much longer
period.

The controller has the coefficients

rT =
(

67.08 86.61 36.55 12.48
)

which results in the poles at

s = {−21.24± 18.74 j,−3.06± 2.02 j}

for the closed loop.

As we can see, in the simulation there are no os-
cillations. However, in the real system, there are
very slight oscillations since the smallest disturbance
would tilt the pendulum.

Figure 11 shows the step at the setpoint, as well as
the angle. Figure 12 is a similar diagram, but shows
the angle for a much longer period.

At http://files.kooltek.net/hslu/inv_pend.
mp4 it is possible to watch the inverted pendulum
with controller in action.
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Figure 9: Comparison between simulated Riccati controller and the measured step response
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Figure 11: Angular displacement during a step
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